Studies & Findings

Strategies for shortening tuberculosis therapy

Strategies for shortening tuberculosis therapy

  • Esmail, H., Macpherson, L., Coussens, A. K. & Houben, R. Mind the gap – managing tuberculosis across the disease spectrum. EBioMedicine 78, 103928 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imperial, M. Z. et al. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nat. Med. 24, 1708–1715 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Target regimen profile for tuberculosis treatment. https://www.who.int/publications/i/item/9789240081512 (Geneva, 2023).

  • Aldridge, B. B. et al. The Tuberculosis Drug Accelerator at year 10: what have we learned? Nat. Med. https://doi.org/10.1038/s41591-021-01442-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, C. A. et al. Variation in tuberculosis treatment outcomes and treatment supervision practices in Uganda. J. Clin. Tuberc. Other Mycobact. Dis. 21, 100184 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Global Tuberculosis Report 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (Geneva, 2023).

  • Kendall, E. A., Shrestha, S. & Dowdy, D. W. The epidemiological importance of subclinical tuberculosis. A critical reappraisal. Am. J. Respir. Crit. Care Med. 203, 168–174 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barry, C. E. 3rd et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drain, P. K. et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00021-18 (2018).

  • Emery, J. C. et al. Self-clearance of Mycobacterium tuberculosis infection: implications for lifetime risk and population at-risk of tuberculosis disease. Proc. Biol. Sci. 288, 20201635 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaidi, S. M. A. et al. Beyond latent and active tuberculosis: a scoping review of conceptual frameworks. EClinicalMedicine 66, 102332 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards, A. S. et al. Quantifying progression and regression across the spectrum of pulmonary tuberculosis: a data synthesis study. Lancet Glob. Health 11, e684–e692 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frascella, B. et al. Subclinical tuberculosis disease-a review and analysis of prevalence surveys to inform definitions, burden, associations, and screening methodology. Clin. Infect. Dis. 73, e830–e841 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Long, R. et al. The association between phylogenetic lineage and the subclinical phenotype of pulmonary tuberculosis: a retrospective 2-cohort study. J. Infect. 88, 123–131 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanley, S. et al. Identification of bacterial determinants of tuberculosis infection and treatment outcomes: a phenogenomic analysis of clinical strains. Lancet Microbe https://doi.org/10.1016/S2666-5247(24)00022-3 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagneux, S. Host–pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 850–859 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stucki, D. et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 48, 1535–1543 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malherbe, S. T. et al. PET/CT guided tuberculosis treatment shortening: a randomized trial. Preprint at medRxiv https://doi.org/10.1101/2024.10.03.24314723 (2024).

  • Zhao, L., Gao, F., Zheng, C. & Sun, X. The impact of optimal glycemic control on tuberculosis treatment outcomes in patients with diabetes mellitus: systematic review and meta-analysis. JMIR Public Health Surveill. 10, e53948 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seddon, J. A., Chiang, S. S., Esmail, H. & Coussens, A. K. The wonder years: what can primary school children teach us about immunity to Mycobacterium tuberculosis? Front. Immunol. 9, 2946 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. WHO consolidated guidelines on tuberculosis, module 4: treatment, drug-susceptible tuberculosis treatment. https://www.who.int/publications/i/item/9789240048126 (Geneva, 2022).

  • Jain, S. K. et al. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat. Immunol. 19, 521–525 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wasserman, S. & Harrison, T. S. Tuberculous meningitis – new approaches needed. N. Engl. J. Med. 389, 1425–1426 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wasserman, S. et al. Advancing the chemotherapy of tuberculous meningitis: a consensus view. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00512-7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabala, C. et al. Clinical outcomes in children living with HIV treated for non-severe tuberculosis in the SHINE Trial. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciae193 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morey, S. S. ATS adopts diagnostic standards for tuberculosis. Am. Fam. Physician 63, 979–980 (2001).


    Google Scholar
     

  • Coussens, A. K. et al. Classification of early tuberculosis states to guide research for improved care and prevention: an international Delphi consensus exercise. Lancet Respir. Med. 12, 484–498 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sossen, B. et al. The natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysis. Lancet Respir. Med. 11, 367–379 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lau, A. et al. The radiographic and mycobacteriologic correlates of subclinical pulmonary TB in canada: a retrospective cohort study. Chest 162, 309–320 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Esmail, H. et al. High resolution imaging and five-year tuberculosis contact outcomes. Preprint at medRxiv https://doi.org/10.1101/2023.07.03.23292111 (2023).

  • Nathavitharana, R. R., Garcia-Basteiro, A. L., Ruhwald, M., Cobelens, F. & Theron, G. Reimagining the status quo: how close are we to rapid sputum-free tuberculosis diagnostics for all? EBioMedicine 78, 103939 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryckman, T. S., Dowdy, D. W. & Kendall, E. A. Infectious and clinical tuberculosis trajectories: Bayesian modeling with case finding implications. Proc. Natl Acad. Sci. USA 119, e2211045119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, B. et al. Aerosolization of viable Mycobacterium tuberculosis bacilli by tuberculosis clinic attendees independent of sputum-Xpert Ultra status. Proc. Natl Acad. Sci. USA 121, e2314813121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahid, P. et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin. Infect. Dis. 63, 853–867 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorman, S. E. et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N. Engl. J. Med. 384, 1705–1718 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, W., Ellard, G. A. & Mitchison, D. A. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int. J. Tuberc. Lung Dis. 3, 231–279 (1999).


    Google Scholar
     

  • Merle, C. S. et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 372, 1677 (2015).

  • Gillespie, S. H. et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371, 1577–1587 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jindani, A. et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 371, 1599–1608 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopalan, N. et al. Predictors of unfavorable responses to therapy in rifampicin-sensitive pulmonary tuberculosis using an integrated approach of radiological presentation and sputum mycobacterial burden. PLoS ONE 16, e0257647 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romanowski, K. et al. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: an individual patient data meta-analysis. Thorax 74, 291–297 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Campbell, J. R. et al. Association of indicators of extensive disease and rifampin-resistant tuberculosis treatment outcomes: an individual participant data meta-analysis. Thorax 79, 169–178 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, K. C., Leung, C. C., Yew, W. W., Ho, S. C. & Tam, C. M. A nested case-control study on treatment-related risk factors for early relapse of tuberculosis. Am. J. Respir. Crit. Care Med 170, 1124–1130 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Canetti, G. The Tubercle Bacillus (Springer, 1955).

  • Koch, R. Die aetiologie der tuberculose. Berliner Klinische Wochenschrift Vol. 19, No. 15, 221–230 (1882).

  • Loring, W. W., Melvin, I., Vandiviere, H. M. & Willis, H. S. The death and resurrection of the tubercle bacillus. Trans. Am. Clin. Climatol. Assoc. 67, 132–138 (1955).

    PubMed 

    Google Scholar
     

  • Mishra, S. & Saito, K. Clinically encountered growth phenotypes of tuberculosis-causing bacilli and their in vitro study: a review. Front. Cell Infect. Microbiol. 12, 1029111 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, G. et al. Micro-computed tomography analysis of the human tuberculous lung reveals remarkable heterogeneity in 3D granuloma morphology. Am. J. Respir. Crit. Care Med. 204, 583–595 (2021).

  • Chen, R. Y. et al. Radiological and functional evidence of the bronchial spread of tuberculosis: an observational analysis. Lancet Microbe https://doi.org/10.1016/S2666-5247(21)00058-6 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prosser, G. et al. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect. 19, 177–192 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conradie, F. et al. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 382, 893–902 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goig, G. A. et al. Transmission as a key driver of resistance to the new tuberculosis drugs. N. Engl. J. Med. 392, 97–99 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, E. S. et al. Bedaquiline: what might the future hold? Lancet Microbe https://doi.org/10.1016/S2666-5247(24)00149-6 (2024).

  • Nimmo, C. et al. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front. Cell Infect. Microbiol. 12, 954074 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perumal, R. et al. Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur. Respir. J. https://doi.org/10.1183/13993003.00639-2023 (2023).

  • Zhao, B. et al. Prevalence and genetic basis of Mycobacterium tuberculosis resistance to pretomanid in China. Ann. Clin. Microbiol. Antimicrob. 23, 40 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miotto, P., Cirillo, D. M., Schon, T. & Koser, C. U. The exceptions that prove the rule—a historical view of bedaquiline susceptibility. Genome Med. 16, 39 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rockwood, N., Abdullahi, L. H., Wilkinson, R. J. & Meintjes, G. Risk factors for acquired rifamycin and isoniazid resistance: a systematic review and meta-analysis. PLoS ONE 10, e0139017 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barilar, I. et al. CRyPTIC Consortium. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. Nat. Commun. 15, 488 (2024).

    Article 

    Google Scholar
     

  • Sarathy, J. P. et al. Extreme drug tolerance of Mycobacterium tuberculosis in caseum. Antimicrob. Agents Chemother. 62, e02266–e02317 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waller, N. J. E., Cheung, C. Y., Cook, G. M. & McNeil, M. B. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis. Nat. Commun. 14, 1517 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roemhild, R., Bollenbach, T. & Andersson, D. I. The physiology and genetics of bacterial responses to antibiotic combinations. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00700-5 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sullivan, G. J., Delgado, N. N., Maharjan, R. & Cain, A. K. How antibiotics work together: molecular mechanisms behind combination therapy. Curr. Opin. Microbiol. 57, 31–40 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline. Proc. Natl Acad. Sci. USA 116, 19646–19651 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulton, N. C. et al. Beyond antibiotic resistance: the whiB7 transcription factor coordinates an adaptive response to alanine starvation in mycobacteria. Cell Chem. Biol. https://doi.org/10.1101/2023.06.02.543512 (2023).

    Article 

    Google Scholar
     

  • Morris, R. P. et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 12200–12205 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrader, S. M. et al. Multiform antimicrobial resistance from a metabolic mutation. Sci. Adv. 7, eabh2037 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dheda, K. et al. Multidrug-resistant tuberculosis. Nat. Rev. Dis. Primers 10, 22 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Li, S. et al. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat. Microbiol. 7, 766–779 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckartt, K. A. et al. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 628, 186–194 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dooley, K. E., Hanna, D., Mave, V., Eisenach, K. & Savic, R. M. Advancing the development of new tuberculosis treatment regimens: the essential role of translational and clinical pharmacology and microbiology. PLoS Med. 16, e1002842 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. L. et al. Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abd7618 (2021).

  • Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ernest, J. P. et al. Development of new tuberculosis drugs: translation to regimen composition for drug-sensitive and multidrug-resistant tuberculosis. Annu. Rev. Pharmacol. Toxicol. 61, 495–516 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarathy, J. P. et al. A novel tool to identify bactericidal compounds against vulnerable targets in drug-tolerant M. tuberculosis found in caseum. mBio 14, e0059823 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lovewell, R. R., Sassetti, C. M. & VanderVen, B. C. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr. Opin. Microbiol. 29, 30–36 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gold, B. & Nathan, C. Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.TBTB2-0031-2016 (2017).

  • Lanni, F. et al. Adaptation to the intracellular environment of primary human macrophages influences drug susceptibility of Mycobacterium tuberculosis. Tuberculosis 139, 102318 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J. Exp. Med. 213, 809–825 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perumal Kannabiran, B. et al. Safety and efficacy of 25 mg/kg and 35 mg/kg vs 10 mg/kg rifampicin in pulmonary TB: a phase IIb randomized controlled trial. Open Forum Infect. Dis. 11, ofae034 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onorato, L. et al. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin. Microbiol Infect. 27, 830–837 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espinosa-Pereiro, J. et al. Safety of rifampicin at high dose for difficult-to-treat tuberculosis: protocol for RIAlta phase 2b/c trial. Pharmaceutics https://doi.org/10.3390/pharmaceutics15010009 (2022).

  • Diacon, A. H. et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob. Agents Chemother. 51, 2994–2996 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun, H. Y. et al. Model-based efficacy and toxicity comparisons of moxifloxacin for multidrug-resistant tuberculosis. Open Forum Infect. Dis. 9, ofab660 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kusmiati, T. et al. Moxifloxacin concentration correlate with QTc interval in rifampicin-resistant tuberculosis patients on shorter treatment regimens. J. Clin. Tuberc. Other Mycobact. Dis. 28, 100320 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, A. et al. Circulating cell-free RNA in blood as a host response biomarker for the detection of tuberculosis. Nat. Commun. https://doi.org/10.1038/s41467-024-49245-6 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F., Zhang, F., Dong, Y., Li, L. & Pang, Y. New insights into biomarkers for evaluating therapy efficacy in pulmonary tuberculosis: a narrative review. Infect. Dis. Ther. 12, 2665–2689 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corrigan, D. T., Ishida, E., Chatterjee, D., Lowary, T. L. & Achkar, J. M. Monoclonal antibodies to lipoarabinomannan/arabinomannan – characteristics and implications for tuberculosis research and diagnostics. Trends Microbiol. 31, 22–35 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, X., He, Y., Zhou, K., Hua, Y. & Li, Y. Efficacy of Xpert in tuberculosis diagnosis based on various specimens: a systematic review and meta-analysis. Front. Cell Infect. Microbiol. 13, 1149741 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabone, O. et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J. Exp. Med. https://doi.org/10.1084/jem.20210915 (2021).

  • Pierneef, L. et al. Host biomarker-based quantitative rapid tests for detection and treatment monitoring of tuberculosis and COVID-19. iScience 26, 105873 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paton, N. I. et al. Treatment strategy for rifampin-susceptible tuberculosis. N. Engl. J. Med. 388, 873–887 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermans, S., Horsburgh, C. R. Jr. & Wood, R. A century of tuberculosis epidemiology in the northern and southern hemisphere: the differential impact of control interventions. PLoS ONE 10, e0135179 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillespie, S. H. et al. Developing biomarker assays to accelerate tuberculosis drug development: defining target product profiles. Lancet Microbe https://doi.org/10.1016/S2666-5247(24)00085-5 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Moyo, S. et al. Prevalence of bacteriologically confirmed pulmonary tuberculosis in South Africa, 2017-19: a multistage, cluster-based, cross-sectional survey. Lancet Infect. Dis. 22, 1172–1180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, J. L. et al. Shortening treatment in adults with noncavitary tuberculosis and 2-month culture conversion. Am. J. Respir. Crit. Care Med 180, 558–563 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • A controlled trial of 3-month, 4-month, and 6-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis. Results at 5 years. Hong Kong Chest Service/Tuberculosis Research Centre, Madras/British Medical Research Council. Am. Rev. Respir. Dis. 139, 871–876 (1989).

  • Teo, S. K., Tan, K. K. & Khoo, T. K. Four-month chemotherapy in the treatment of smear-negative pulmonary tuberculosis: results at 30 to 60 months. Ann. Acad. Med. Singap. 31, 175–181 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James, L. P. et al. Impact and cost-effectiveness of the 6-month BPaLM regimen for rifampicin-resistant tuberculosis in Moldova: a mathematical modeling analysis. PLoS Med. 21, e1004401 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, G. M. et al. The impact and cost-effectiveness of a four-month regimen for first-line treatment of active tuberculosis in South Africa. PLoS ONE 10, e0145796 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goh, J. J. N. et al. Prospectively predicting BPaMZ phase IIb/III trial outcomes using a translational mouse-to-human platform. Antimicrob. Agents Chemother. 68, e0061524 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Walter, N. D. et al. Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nat. Commun. 12, 2899 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zainabadi, K. et al. Transcriptional biomarkers of differentially detectable mycobacterium tuberculosis in patient sputum. mBio 13, e0270122 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zainabadi, K. et al. Characterization of differentially detectable mycobacterium tuberculosis in the sputum of subjects with drug-sensitive or drug-resistant tuberculosis before and after two months of therapy. Antimicrob. Agents Chemother. 65, e0060821 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, J. S. et al. Differentially culturable tubercle bacteria as a measure of tuberculosis treatment response. Front. Cell Infect. Microbiol. 12, 1064148 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fox, W. Whither short-course chemotherapy? Br. J. Dis. Chest 75, 331–357 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Welcome to Herbology News!

    At Herbology News, we’re dedicated to empowering you with knowledge and resources to help you lead a healthier life naturally. 

    Get Latest Updates and big deals

      Our expertise, as well as our passion for web design, sets us apart from other agencies.

      Herbologynews @2024. All Rights Reserved.